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Abstract

In this paper, Hamilton’s principle, Lagrange multiplier, geometric constraints and partitioning method
are employed to derive the dynamic equations of a slider-crank mechanism driven by a servomotor. The
formulation is expressed by only one independent variable and considers the effects of mass, external force
and motor electric inputs. Comparing the dynamic responses between the experimental results and
numerical simulations, the dynamic modeling gives a wonderful interpretation of a slider-crank mechanism.
The parameters of many industrial machines are difficult to obtain if these machines cannot be taken apart.
In this paper, a new identification method based on the real-coded genetic algorithm (RGA) is presented to
identify the parameters of a slider-crank mechanism. The method promotes the calculation efficiency very
much, and is calculated by the real-code without the operations of encoding and decoding. The results of
numerical simulations and the experiments prove that the identification method is feasible. Finally, the
experimental results by the RGA and the recursive least squares (RLS) are also compared.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A slider-crank mechanism is widely used in gasoline and diesel engines, and has been studied
extensively in the past three decades. The responses of the system found by Viscomi and Ayre [1]
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Bm motor damping coefficient
FE external disturbance force acting on the

slider
FB friction force
Ff fitness function
g gravity acceleration
iq torque current command
Jm motor moment inertia
Kt motor torque constant
l the length of the rod CM
M the mass matrix
m1 the mass of the disk
m2 the mass of the rod CM

m3 the mass of the slider
N the nonlinear vector
Q the vector of generalized coordinates
r the radius of the disk
T the kinetic energy of a slider-crank

mechanism
t time
V the potential energy of a slider-crank

mechanism
X B the displacement of slider B

f the angle between rod CD and X-axis
l Lagrange multiplier
m the coefficient of friction
y the angle position of the disk
t the load torque
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are dependent upon five parameters: the length, mass, damping, external piston force and
frequency. The steady-state responses of the flexible connecting rod of a slider-crank mecha-
nism with time-dependent boundary effect were obtained by Fung [2]. A slider-crank mecha-
nism with constantly rotating speed was controlled by Fung et al. [3]. The mathematical
model of the coupled mechanism of a slider-crank mechanism was obtained by Lin et al. [4], where
the system is actuated by a field-oriented control permanent magnet (PM) synchronous
servomotor.
However, the dynamic formulations of a slider-crank mechanism with one degree of freedom

have more than one independent variable in the past researches [3,4]. In this study, the dynamic
formulation is expressed by only one independent variable of rotation angle. Moreover, its
dynamic responses are compared well with the experimental results.
Genetic algorithm was defined by John Holland in 1975 [5]. It is a search process based on

natural selection, and is now used as a tool for searching the large, poorly understood spaces
that arise in many application areas of science and engineering. Although it has recently
found extensive applications, most have low calculation efficiency because the procedure of the
GA [6,7] must use the operations of encoding and decoding. In addition, the parameters of many
industrial machines are difficult to obtain because these machines cannot be taken apart. It is
more natural to represent the genes directly as real numbers. Because the method is calculated by
real code, it can shorten the calculating time. Therefore, the RGA promotes the calculation
efficiency very much. In order to solve the arduous problem, the real-coded genetic algorithm
(RGA) [8–10] is employed to find the optimal identified parameters of a slider-crank mechanism
in this study.
This study successfully demonstrates that the dynamic formulation can give a wonderful

interpretation of a slider-crank mechanism by comparing it with the dynamic responses of the
experimental results. Furthermore, a new identified method using the RGA is proposed, and it is
confirmed that the method can perfectly search the parameters of a slider-crank mechanism
through the numerical simulations and experiments.
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2. Dynamic formulation of a slider-crank mechanism

A slider-crank mechanism is a single-looped mechanism with a very simple construction shown
in Fig. 1(a); the experimental equipment of a slider-crank mechanism is shown in Fig. 1(b). It
consists of three parts: a rigid disk, which is driven by a servomotor, a connecting rod and a slider.
2.1. Dynamic modeling

2.1.1. Geometric equations

Fig. 1(a) shows the physical model of a slider-crank mechanism, where the mass center and the
radius of the rigid disk are denoted as point ‘‘O’’ and length ‘‘r’’, respectively. The length of the
connected rod AB is denoted by ‘‘l’’. The angle y is between OA and the X-axis, while the angle f
is between the rod AB and the X-axis. In the OXY plane, the geometric positions of gravity centers
of the rigid disk, connected rod and slider, respectively, are as follows:

x1cg ¼ 0; y1cg ¼ 0, (1)
θ φ
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Fig. 1. The slider-crank mechanism. (a) The physical model of a slider-crank mechanism, (b) the experiment equipment

of a slider-crank mechanism.
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x2cg ¼ r cos yþ 1
2

l cosf; y2cg ¼
1
2

l sinf, (2)

x3cg ¼ r cos yþ l cosf; y3cg ¼ 0. (3)

The mechanism has a constrained condition as follows:

r sin y ¼ l sinf. (4)

The angle f can be found from Eq. (4) as

f ¼ sin�1
r

l
sin y

� �
. (5)

2.1.2. Kinematic analysis
In the kinematic analysis, taking the first and second derivates of the displacement of slider B

with respect to time, the speed and acceleration of slider B are as follows:

_xB ¼ �r_y sin y� l _f sinf, (6)

€xB ¼ �r€y sin y� r _y
2
cos y� l €f sinf� l _f

2
cosf. (7)

Similarly, the angular velocity _f and acceleration €f are obtained as follows:

_f ¼
r_y cos y
l cosf

, (8)

€f ¼
r€y cosf cos yþ r_y _f cos y sinf� r_y

2
sin y cosf

l cos2 f
. (9)

2.1.3. Field-oriented PM synchronous motor drive
A machine model of a PM synchronous motor can be described in a rotor rotating [11] as

follows:

vq ¼ Rsiq þ plq þ wsld , (10)

vd ¼ Rsid þ pld � wslq, (11)

where

lq ¼ Lqiq, (12)

ld ¼ Ldid þ LmdIfd . (13)

In the above equations, vd and vq are the d and q axis stator voltages, id and iq are the d and q axis
stator currents, Ld and Lq are the d and q axis inductances, ld and lq are the d and q axis stator
flux linkages and Rs and ws are the stator resistance and inverter frequency, respectively. In Eq.
(13), I fd is the equivalent d-axis magnetizing current and Lmd is the d-axis mutual inductance. The
electric torque is

tm ¼
3
2

p½LmdIfd iq þ ðLd � LqÞid iq� (14)

and the equation for the motor dynamics is

te ¼ tm þ Bmor þ Jm _or. (15)
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In Eq. (14), p is the number of pole pairs, tm is the load torque, Bm is the damping coefficient, or is
the rotor speed and Jm is the moment of inertia. The basic principle in controlling a PM
synchronous motor drive is based on field orientation. The flux position in the d–q coordinates
can be determined by the shaft-position sensor because the magnetic flux generated from the rotor
permanent magnetic is fixed in relation to the rotor shaft position. In Eqs. (13–14), if id ¼ 0, the d-
axis flux linkage ld is fixed since Lmd and Ifd are constant for a surface-mounted PM synchronous
motor, and the electromagnetic torque te is then proportional to iq, which is determined by closed-
loop control. The rotor flux is produced in the d-axis only, and the current vector is generated in
the q-axis for the field-oriented control. As the generated motor torque is linearly proportional to
the q-axis current as the d-axis rotor flux is constant in Eq. (14), the maximum torque per ampere
can be achieved. With the implementation of field-oriented control, the PM synchronous motor
drive system can be simplified to a control system block diagram, as shown in Fig. 2, in which

te ¼ Kti
�
q, (16)

Kt ¼
3
2

PLmdIfd , (17)

HpðsÞ ¼
1

Jmsþ Bm

, (18)

where i�q is the torque current command. By substituting Eq. (16) into Eq. (15), the following
applied torque can be obtained:

tm ¼ Ktiq � Jm _or � Bmor, (19)

where tm is the torque applied in the direction of or, and the variables or and _or are the angular
speed and acceleration of the disk, respectively.

2.2. Governing equations

Hamilton’s principle, Lagrange multiplier, geometric constraints and partitioning method are
employed to formulate the differential-algebraic equation (DAE) for a slider-crank mechanism.
The angles y and f are selected as the generalized coordinates. The complete derivation of the
equations of motion is given in Appendix A. By taking account of the control force and constraint
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Fig. 2. The simplified control block diagram.
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force, the equation in the matrix form can be obtained as

MðQÞ €QþNðQ; _QÞ þUT
Qk ¼ QA, (20)

where MðQÞ, NðQ; _QÞ, UT
Qk and QA can be seen in Appendix A.

2.3. Decouple the differential equations

In the dynamic analysis, the partitioning method [3,4] is employed, and the partitioning
coordinate vector is selected as

Q ¼ ½Q1 Q2 � � � Q3�
T ¼ ½pT qT�T, (21)

where p ¼ ½p1 p2 � � � pm�
T and q ¼ ½q1 q2 � � � qk�

T are the m dependent and k independent
coordinates, respectively. The m constraint equations are

UðQÞ � Uðp; qÞ ¼ 0. (22)

The numerical method may be used to solve the set of nonlinear algebraic equations (22). If the m
constraint equations are independent, the existence of a solution p for a given q can be asserted by
an implicit function theory.
Differentiating Eq. (22) yields the constraint velocity equation as

UQ
_Q ¼ 0, (23)

where matrix UQ ¼ ½qU=qQ� is the partial derivative of the constraint equation with respect to the
coordinate, and is called the Jacobian constraint matrix. Sequentially, Eq. (23) can be rewritten in
a partitioned form as

Up _p ¼ �Uq _q, (24)

where Up and Uq are two sub-matrices of UQ. Since the m constraint equations are assumed
independent, Up is an m�m nonsingular matrix. Sequentially, Eq. (21) can be solved directly for
_p as long as _q is given.
Differentiating the constraint velocity of Eq. (23), the acceleration constraint equation becomes

UQ
€Q ¼ �ðUQ

_QÞQ _Q � c, (25)

where €Q ¼ ½€pT €qT�T is the vector of acceleration. Similarly, Eq. (25) can also be rewritten in a
partitioned form as

Up €p ¼ �Uq €q� ðUQ
_QÞQ _Q. (26)

Since Up is nonsingular, Eq. (26) can be solved for €p, once €q is given. Note that the velocity (24)
and acceleration (26) are two sets of linear algebraic equations in _Q and €Q, respectively.
Eqs. (20) and (25) can be combined into the matrix form as

M UT
Q

UQ 0

" #
€Q

k

" #
¼

QA �NðQ; _QÞ

c

" #
. (27)

Eq. (27) represents a system of DAE and can be solved using the implicit function method as
shown in the following reordering and partitioning processes.
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Decomposing Q into p and q, the system equations become

Mpp €pþMpq €qþUT
pk ¼ Qp �Np, (28a)

Mqp €pþMqq €qþUT
qk ¼ Qq �Nq, (28b)

Up €pþUq €q ¼ c. (28c)

By using Eqs. (28a) and (28c) and eliminating k and €p we obtain

k ¼ ðUT
p Þ
�1
½Qp �Np �Mpp €p�Mpq €q�, (29)

€p ¼ U�1p ½c�Uq €q�. (30)

Eqs. (28b), (29) and (30) can be combined in the matrix form as

M̂ðqÞ€qþ N̂ðq; _qÞ ¼ F̂, (31)

where

M̂ ¼Mqq �MqpU�1p Uq �UT
q ðU

T
p Þ
�1
½Mpq �MppU�1p Uq�, (32)

N̂ ¼ ½Nq �UT
q ðU

T
p Þ
�1Np� þ ½MqpU�1p �UT

q ðU
T
p Þ
�1MppU�1p �c, (33)

F̂ ¼ Qq �UT
q ðU

T
p Þ
�1Qp. (34)

For a slider-crank mechanism shown in Fig. 1(a), we have

p ¼ ½f�; q ¼ ½y�,

Uq ¼ ½r cos y�; Up ¼ ½�l cosf�,

Mpp ¼ ½A�; Mpq ¼ ½E�; Mqp ¼ ½E�; Mqq ¼ ½B�,

Np ¼ ½KW �; Nq ¼ ½PW �,

Qp ¼ ½ðFB þ FEÞl sinf�; Qq ¼ ½ðFB þ FEÞr sin y� t�,

where A, B, E, KW and PW can be seen in Appendix A.
Eq. (31) is a set of differential equations with only one independent generalized coordinate

vector q ¼ ½y�. It is seen that the entries of M̂, N̂ and F̂ of Eq. (31) have two independent variables
y and f. By using Eq. (4) and its time derivative, we could derive the equation with only one
independent variable y as follows:

M̂ðyÞ€yþ N̂ðy; _yÞ ¼ F̂ ðyÞ, (35)
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where

M̂ ¼ ð2m3 þm2Þ þ
m3

c
r cos y

h i r3

c
cos y sin2 y

� �
þ ðm2 þm3Þr

2 sin2 y

þ
1

3
m2

l

c

� �2

ðr cos yÞ2 þ
1

2
m1r

2 þ Jm,

N̂ ¼ m2r
2 sin y cos y 1�

l2

3c2
þ

r

c
cos yþ

ðlrÞ2

3c4
cos2 yþ

r3

2c3
cos y sin2 y

� ��

� m2
r3

2c
sin3 yþm3r

2 sin y cos y 1�
r2

c2
sin2 yþ

r2

c2
cos2 yþ

2r

c
cos y

�

þ
r4 cos2 y sin2 y

c4
þ

r3

c3
sin2 y cos y

�
�m3

r3

c
sin3 y

�
_y
2
þ Bm

_yþ
1

2
m2gr cos y,

F̂ ¼ Ktiq � ðFB þ FEÞr sin y 1þ
r

c
cos y

� �
,

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 y

p
.

The system becomes an initial value problem and can be directly integrated by using the fourth-
order Runge–Kutta method.

2.4. Alternative dynamic modeling

An alternative dynamic modeling by the Euler–Lagrange equation is shown in Appendix B, and
the dynamic equation obtained in terms of only one independent variable y is the same as that of
Eq. (35).

3. Identification based on real-coded genetic algorithm

The parameters of a slider-crank mechanism could not be obtained directly. In order to solve
the arduous problem, the RGA is employed to find the optimal identified parameters of a slider-
crank mechanism. Therefore, the unknown parameters m1, m2, m3, r and l could be identified by
the input current iq and output y, _y and €y.

3.1. The procedure of the real-coded genetic algorithm

The procedure of the RGA [9] is shown in Fig. 3 and is described as follows.
Step 1: Setting the constraint specification. Before executing the RGA process, some speci-

fications must be decided for the RGA, i.e. population size, maximum generation number,
crossover probability, mutation probability, the fitness function, the range of each parameter, etc.
Note that the setting specifications must be reasonable, because good initial parameters and
specifications dramatically speed up the convergence. In this study, we can assign the searching
range of the elements by our knowledge and experience.
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Step 2: Determining fitness function. How to define the fitness function is the key point of the
genetic algorithm, since the fitness function is a figure of merit, computed by using any domain
knowledge. First, Eq. (35) can be rewritten as follows:

E ¼ M̂ðyÞ � €yþ N̂ðy; _yÞ � F̂ ðyÞ ¼ 0. (36)

Then, the fitness function can defined as

Ff ðm1;m2;m3; r; lÞ ¼
DPn

i¼1 E2
i

, (37a)

Ei ¼ jM̂iðyiÞ �
€yi þ N̂iðyi; _yiÞ � F̂ iðyiÞj, (37b)
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where D is a positive constant, Ei are the calculated value and tested value of the ith sample point
of E in time domain, n is the number of samples, and yi, _yi and €yi are all tested values.

Step 3: Generating the initial population. According to the constraint, determine the range of
each parameter; then the initial real-valued genes in chromosomes are generated by a sequence of
real-valued variable by the range we limited randomly.
In this study, there are 5 parameters. The population size is 200. Then, the chromosomes P1 and

P2 are expressed as

P1 ¼ ðm11;m21;m31; r1; l1Þ, (38a)

P2 ¼ ðm12;m22;m32; r2; l2Þ, (38b)

where m11 and m12, m21 and m22, m31 and m32, r1 and r2, l1 and l2, are the genes of the variables
m1, m2, m3, r and l, respectively. The crossover (step 6) and mutation (step 7) are carried out
between m11 and m12, m21 and m22, m31 and m32, r1 and r2, l1 and l2.

Step 4: Evaluating fitness value. The fitness function has already been defined in step 2. The
fitness value of each chromosome is obtained by calculating the fitness value according to step 2.

Step 5: Reproduction. The reproduction procedure adopts the roulette wheel selection to pick
chromosomes into the mating pool. Therefore, the probability of the jth chromosome into the
mating pool uses the following equation:

fit_ratioj ¼
fitness_valuejP200
j¼1 fitness_value

. (39)

The chromosomes of the mating pool are called parent chromosomes, which are randomly
selected by probability. In general, it is easier for the superior chromosomes to enter the mating
pool. The reproduction module is a preparation before execution of the crossover procedure.

Step 6: Crossover. Crossover recombines the genetic material in two randomly selected parent
chromosomes from the mating pool to produce two children (offspring). Here, the arithmetic
crossover operator [9] is used, which is defined as follows:

x01 ¼ ð1� aÞ � xp1 þ a � xp2, (40a)

x02 ¼ a � xp1 þ ð1� aÞ � xp2, (40b)

where xp1 and xp2 are two genes in parent chromosomes, x01 and x02 are two children, and a is
selected randomly between 0 and 1. The crossover probability is generally given between 0.8 and
1. In this study, the crossover probability is 1.

Step 7: Mutation. Mutation is directly applied to the offspring genes. Here, uniform mutation is
used, which is defined as follows:

xnew ¼ LBþ bðUB� LBÞ, (41)

where xnew is the gene after mutation, b is selected randomly between 0 and 1, LB is the minimum
value of the gene’s range and UB is the maximum value of the gene’s range. The mutation
procedure is executed by the mutation probability. In general, the mutation probability is often
given a low value. In this study, the mutation probability is 0.08.

Step 8: Evaluating fitness value for offspring chromosomes. Through the operators of steps 3–7,
the new chromosomes can be obtained, which are called the ‘‘offspring chromosomes’’. Then,
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Eq. (37a) is employed to calculate the fitness value for the offspring chromosomes. However, the
fitness value of offspring chromosomes may be inferior to that of their parents.

Step 9: Constructing the new population. In this step, the objective is to generate a new
population (new parent chromosomes), which is composed of superior chromosomes of parent and
offspring population. The new population generating process is called ‘‘generation’’ or ‘‘selection’’.
Finally, the steps 5–9 are separated to search for the optimal solution until the end of the

maximum generation. In this study, the maximum generation number is 100.

4. Identification based on the RLS

In this section, the RLS method is employed to identify the parameters of a slider-crank
mechanism and the results will be compared with those by the RGA.

4.1. Least-squares algorithm

The standard form for a linear least-squares (LS) problem is given as

y ¼ Xaþ e or yffi Xa, (42)

where y is a vector of noise-free measurements, e is a vector of measurement noise, the matrix X

contains known variables and parameters and a is a vector of parameters to be identified. The
symbolffi in yffi Xa indicates that the left and right sides of Eq. (42) would be equal if noise was
not present. The LS identification solution, â, minimizes the sum of the squares of the error,
y� Xâ. If the problem at hand can be put into this standard form, by using a batch algorithm, â
can be solved directly as

â ¼ ðXTXÞ�1XTy, (43)

if and only if XTX is nonsingular, and Eq. (43) can be rewritten as

âðtÞ ¼
Xt

i¼1

xðiÞxTðiÞ

 !�1 Xt

i¼1

xðiÞyðiÞ

 !
¼ pðtÞ

Xt

i¼1

xðiÞyðiÞ

 !
. (44)

Manipulating the original equations into the form yffi Xa such that the standard LS solution
can be solved is often the primary challenge, and requires careful, application-dependent decisions
regarding approximations.

4.2. Recursive LS algorithm

In the study of the LS problem, Bjork [12] demonstrated that if XTX is nonsingular, Eq. (43) has
the following recursive solutions:

âðtþ 1Þ ¼ âðtÞ þ Kðtþ 1Þ½yðtþ 1Þ � xTðtþ 1ÞâðtÞ�, (45)

Kðtþ 1Þ ¼ PðtÞxðtþ 1Þ½Iþ xðtþ 1ÞPðtÞxðtþ 1Þ��1, (46)

Pðtþ 1Þ ¼ PðtÞ � PðtÞxðtþ 1Þ½Iþ xðtþ 1ÞPðtÞxTðtþ 1Þ��1xTðtþ 1ÞPðtÞ, (47)

where the last equality in Eq. (47) follows from the Matrix Inversion Lemma [13].
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The recursive Eq. (47) plays a crucial role in the recursion Eqs. (45)–(47), and generally, when
XTX is singular, there exists no recursion similar to Eqs. (45)–(47). Comparing with the batch
solution (43) the recursive solutions (45)–(47) offer important advantages. The RLS requires a
constant computation time for each parameter update, and therefore it is perfectly suited for
online use in real-time applications.

4.3. Derivation of the parameters for the RLS algorithm

The final dynamic equation of a slider-crank mechanism in matrix form is Eq. (35). In this
paper, the goal of estimation parameters m1, m2, m3, r and l is required to be written as vector.
However, the parameters r and l cannot be expanded as a standard form of Eq. (42). Eq. (35)
could only be modified as

y ¼ ½x1 x2 x3�

m1

m2

m3

2
64

3
75 ¼ Xâ. (48)

The details of the variables y, x1, x2 and x3 are written in Appendix C. The â is the goal of
identifying parameters by the RLS algorithm. By manipulating Eqs. (45–47), the input is the
current i�q and the outputs are y, _y and €y.
5. Numerical simulation and experimental results

5.1. Experimental setup

A block diagram of the computer control system for the PM synchronous servomotor drive
coupled with a slider-crank mechanism is shown in Fig. 4(a) and the experimental equipment of a
slider-crank mechanism of a computer control system is shown in Fig. 4(b). The control algorithm
is implemented using a Pentium computer and the control software is LABVIEW. The PM
synchronous servomotor is implemented by MITSUBISHI HC-KFS43 series. The specifications
are shown as follows: rated output 400 (W), rated torque 1.3 (Nm), rated rotation speed 3000 (rev/
min) and rated current 2.3 (A). The servo is implemented by MITSUBISHI MR-J2S-40A1. The
control system is Sine-wave PWM control, which is a current control system. In order to measure
the angle and angular speed of the disk and the position and velocity of the slider B, the interface
of the device is implemented by motion control card PCI-7342. It can measure the angle of the
disk and the position of slider B at the same time.
The main parameters of a slider-crank mechanism and servomotor used in the numerical

simulations and the experiments are as follows:

m1 ¼ 0:232kg; m2 ¼ 0:332kg; m3 ¼ 0:600 kg; r ¼ 0:030m,

l ¼ 0:217m; FB ¼ 0:100N; FE ¼ 0:000N; iq ¼ 0:400A,

Kt ¼ 0:5652Nm=A; Jm ¼ 6:700� 10�5 Nms2; Bm ¼ 1:430� 10�2 Nms=rad.
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Fig. 4. The experimental setup. (a) Computer control system block diagram, (b) the experiment equipment of a slider-

crank mechanism of the Computer control system.
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5.2. Comparisons of the numerical and experimental results

Eq. (35) is calculated by the Runge–Kutta method with time step Dt ¼ 0:001 s from 0 to 2 s to
obtain the numerical solutions, which are compared with the experimental results of a slider-crank
mechanism, and shown in Figs. 5(a), (b) and (c) for the angle y, the angular speed _y and the
angular acceleration €y of the rigid disk, respectively. The angle y and angular speed _y are
measured from the encoder directly, and the angular acceleration €y is numerically calculated from
the angular speed _y. The displacement, speed and acceleration of a slider are shown in Figs. 5(d),
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(e) and (f), respectively. The displacement xB and speed _xB are measured from the linear scale
directly, while the acceleration is numerically calculated from the speed. It is seen that the
responses y, _y, xB and _xB between the numerical and experimental results nearly match.
Therefore, the simulation responses of a slider-crank mechanism are well predicted by the
experimental results.
5.3. The identification of a slider-crank mechanism

5.3.1. Numerical results
The yi, _yi and €yi in Eq. (37b) are calculated by the Runge–Kutta method with time step

Dt ¼ 0:001 s from 0 to 2 s. The parameters m1, m2, m3, r and l are identified by using the RGA
method and the identified results are given in Table 1. From Fig. 6, it is seen that the fitness value
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Fig. 5. Comparisons of the numerical and the experimental dynamic responses of a slider-crank mechanism.
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increases with an increase in the value of the generation number, and the genes ðm1;m2;m3; r; lÞ of
the chromosome almost converge well near the 40th generation. Fig. 7 shows the comparisons of
the numerical dynamic responses and the identified dynamic responses of a slider-crank
mechanism. They are almost the same.

5.3.2. Experimental results
The yi, _yi, and €yi in Eq. (37b) are obtained from experiments with time step Dt ¼ 0:02 s from 0

to 2 s. Similarly, the parameters m1, m2, m3, r and l are identified using the method based on RGA,
and the identified results are given in Fig. 8 and Table 2. From Fig. 8, it is seen that the fitness
value increases with an increase in the value of the generation number; however, the genes
ðm1;m2;m3; r; lÞ of the chromosome almost converge well near the 60th generation.
In order to improve the defect, the damping effect is added to the dynamic equation (35).

Following the similar process, Eq. (42) is obtained as follows:

M
_
ðyÞ€yþN

_
ðy; _yÞ þ Cd �

_y ¼ F̂ ðyÞ. (49)

The fitness function can be defined as follows:

Ff ðm1;m2;m3; r; l;CdÞ ¼
DPn

i¼1 E2
i

, (50a)

where

Ei ¼ jM̂iðyiÞ �
€yi þ N̂iðyi; _yiÞ þ Cd �

_y�i � F̂ iðyiÞj. (50b)

The parameters m1, m2, m3, r, l and Cd are identified again. The identified results are also given
in Fig. 8 and Table 2 for comparison with those without damping effect. The genes
ðm1;m2;m3; r; l;CdÞ of the chromosome also converge near the 60th generation. In these two
cases, the constant values of D in Eqs. (37a) and (50a) are chosen such that the value of the fitness
function is 1. It is seen that the identified parameters are very close for the system with and
without damping.
Figs. 9(a) and (b) show the comparisons of the experimental results with the identified dynamic

responses of a slider-crank mechanism with and without damping. It is found that the identified
dynamic responses match the experimental results well if the damping effect is considered. Note
Table 1

The identified parameters of the numerical simulations

Parameter m1 (kg) m2 (kg) m3 (kg)

Feasible domain 0.000–1.000 0.000–1.000 0.000–1.000

The actual value 0.232 0.332 0.600

The identified value 0.234 0.331 0.603

Parameter r (m) l (m)

Feasible domain 0.000–0.100 0.000–1.000

The actual value 0.030 0.217

The identified value 0.030 0.216
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Fig. 6. The evolution history of the numerical identified parameters and fitness value.
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that although the identified parameters may be different from the true system as seen in Table 2,
the identified dynamic responses agree well with the experimental results. Therefore, the identified
parameters can be called the equivalent parameters and they are feasible.

5.3.3. Comparison between the RGA and RLS

In this section, the identified dynamic responses by the RGA and RLS will be compared with
the experimental results. The LS standard form of Eq. (42) for a slider-crank mechanism with
damping can be modified as follows:

y ¼ ½x1 x2 x3 x4�

m1

m2

m3

Cd

2
6664

3
7775 ¼ Xâ, (51)

where y, x1, x2, x3 and x4 are given in Appendix C.



ARTICLE IN PRESS

A
ng

le
 �

 (r
ad

) 

Time t (sec)
0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

25

30

(a) 

A
ng

ul
ar

 s
pe

ed
 �

 (r
ad

/s
)

.

Time t (sec)
0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

25

(b) 

identified response
numerical response

identified response
numerical response

Fig. 7. Comparisons of the numerical and the identified dynamic responses of a slider-crank mechanism.

J.-L. Ha et al. / Journal of Sound and Vibration 289 (2006) 1019–1044 1035
With an input current iq ¼ 0:4A, the disk variations y, _y and €y are experimentally obtained
with time step Dt ¼ 0:02 s from 0 to 4 s. It is noted that only the angle y and angular speed _y
of the disk can be experimentally measured by the encoder; its angular acceleration €y is
numerically calculated from the angular speed. Sequentially, the unknown parameters of a slider-
crank mechanism are identified by substituting them into Eqs. (45)–(47) and using the RLS
algorithm. Finally, the experimentally identified parameters are obtained as follows:
m1 ¼ 0:114 kg, m2 ¼ 0:11 kg, m3 ¼ 0:818kg and Cd ¼ 1:17� 10�3 N s=rad. By using these
experimentally identified parameters in the RGA and RLS, we obtain the dynamic responses
of a slider-crank mechanism by numerical computations of Eq. (49). The angle and its angular
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speed of the disk by the RGA and RLS are compared with the experimental results in
Figs. 10(a) and (b), respectively. Observing the compared results, it is found that the res-
ponses by the RGA are closer to the experimental results than those by the RLS. How-
ever, the computational times performed by the same personal computer are about 3 s
by the RLS online and 50 s by the RGA off-line for the identified parameters being converged
stably.
In conclusion, it is seen that the dynamic responses y and _y by the RGA are in good agreement

with experimental results. In other words, the dynamic responses of a slider-crank mechanism are
predicted well and its parameters are identified accurately by the RGA.
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Table 2

The identified parameters of the experimentations with (without) damping

Parameter m1 (kg) m2 (kg) m3 (kg)

Feasible domain 0.000–1.000 0.000–1.000 0.000–1.000

The identified value 0.083 (0.072) 0.224 (0.217) 0.802 (0.800)

Parameter r (m) l (m) Cd

Feasible domain 0.000–0.100 0.000–1.000 0.000–0.001

The identified value 0.024 (0.023) 0.495 (0.499) 3:145� 10�4

J.-L. Ha et al. / Journal of Sound and Vibration 289 (2006) 1019–1044 1037
6. Conclusions

The dynamic formulations of a slider-crank mechanism driven by a field-oriented PM
synchronous motor drive have been successfully formulated with only one independent variable.
The dynamic formulation can give a good interpretation of a slider-crank mechanism by
comparing the numerical simulations with experimental results. Furthermore, a new identified
method using the real-coded genetic algorithm is employed to search the parameters of a slider-
crank mechanism. The responses are compared with those by the RLS and the experimental
results. It is found that the responses by the RGA are closer to the experimental results than those
by the RLS, but the time needed for off-line computation by the RGA is longer than that needed
by the RLS online.
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Appendix A. Dynamic formulation

The holomonic constraint equation of a slider-crank mechanism from Eq. (4) is obtained as

UðQÞ ¼ r sin y� l sinf ¼ 0, (A.1)

where Q ¼ ½f y�T is the vector of generalized coordinates.
The kinetic energies of the disk with mass m1, the connected rod with mass m2 and the slider

with mass m3 are, respectively,

T1 ¼
1
2

I1 _y
2
¼ 1

2
ð1
2

m1r
2Þ_y

2
¼ 1

4
m1r

2 _y
2
, (A.2)
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T2 ¼
1
2

I2 _f
2
þ 1

2
m2 _x

2
2cg þ

1
2

m2 _y
2
2cg

¼ 1
6 m2l

2 _f
2
þ 1

2 m2r
2 _y

2
sin2 yþ 1

2 m2rl _y _f sin y sinf, ðA:3Þ

T3 ¼
1
2

m3 _x
2
3 ¼

1
2

m3r
2 _y

2
sin2 yþm3rl _y _f sin y sinfþ 1

2
m3l

2 _f
2
sin2 f. (A.4)

Then, the total kinetic energy of a slider-crank mechanism can be obtained as

T ¼ T1 þ T2 þ T3. (A.5)
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The gravitational potential energies V1, V2 and V3 for the disk, connected rod and slider are,
respectively,

V1 ¼ 0, (A.6)

V2 ¼ m2gy2cg ¼
1
2

m2gl sinf, (A.7)
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V3 ¼ 0, (A.8)

where g is the gravitational acceleration. The total potential energy of a slider-crank mechanism
can be obtained as

V ¼ V1 þ V2 þ V3. (A.9)

The virtual works dW A done by the external disturbance force FE and the friction force FB with
the virtual displacement dx of the slider, and the applied torque t with the virtual angle dy are
summed as

dW A ¼ tdyþ ðFE þ FBÞdx

¼ tdyþ ðFE þ FBÞð�r sin y dy� l sinfdfÞ

¼ � dQTQA, ðA:10Þ

where

FB ¼ �mmBg sgnð _xBÞ, (A.11a)

sgnð _xBÞ ¼

1 if _xB40;

0 if _xB ¼ 0;

�1 if _xBo0;

8><
>: (A.11b)

QA ¼
ðFE þ FBÞl sinf

ðFB þ FEÞr sin y� t

" #
(A.12)

and m is the friction coefficient.
The virtual work dW C done by the generalized constrained reaction force QC is

dW c ¼ dQTQC , (A.13)

where

QC ¼ UT
Qk,

UQ ¼
qUðQÞ
qQ

� �
¼ ½�l cosf r cos y�

and k is the Lagrange multiplier.
The Lagrange function L can be written as

L � T � V

¼ 1
4

m1r
2y2 þ 1

6
m2l

2y2 þ 1
2

m2r
2 _y

2
sin2 yþ 1

2
m2rl _y _f sin y sinf

þ 1
2

m3r
2 _y

2
sin2 yþm3rl _y _f sin y sinfþ 1

2
m3l

2 _f
2
sin2 f� 1

2
m2gl sinf. ðA:14Þ

Applying Hamilton’s principle

0 ¼

Z t2

t1

½dLþ dW A þ dW C �dt ¼

Z t2

t1

dQT qL

qQ
�

d

dt

qL

q _Q
�QA þQC

� �
dtþ

qL

q _Q
dQ





t2

t1

. (A.15)
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We can obtain the Euler–Lagrange equation as follows:

MðQÞ €QþNðQ; _QÞ þUT
Qk ¼ QA, (A.16)

where

M ¼
A E

E B

� �
; N ¼

KW

PW

" #

and

A ¼ 1
3

m2l
2
þm3l

2 sin2 f,

B ¼ 1
2

m1r
2 þ ðm2 þm3Þr

2 sin2 y,

E ¼ ð1
2

m2 þm3Þrl sin y sinf,

KW ¼ m3l
2 _f

2
sinf cosfþ ð1

2
m2 þm3Þrl _y

2
cos y sinfþ 1

2
m2gl cosf,

PW ¼ ð
1
2 m2 þmBÞrl _f

2
sin y cosfþ ðm2 þmBÞr

2 _y
2
sin y cos y.
Appendix B. Alternative dynamic modeling of a slider-crank mechanism

In order to show that Eq. (35) is correct, the Euler–Lagrange equation will be applied in the
following form:

d

dt

qL

q_y

� �
�

qL

qy
¼ QA. (B.1)

First, applying the relation of y and f in Eq. (4), the kinetic energies T1, T2 and T3 of Eqs. (A.2,
A.3, A.4), respectively, rewritten in terms of y and _y are

T1 ¼
1
2

I1 _y
2
¼ 1

4
m1r

2 _y
2
, (B.2)

T2 ¼
1
2 I2 _f

2
þ 1

2 m2 _x
2
2cg þ

1
2 m2 _y

2
2cg

¼ m2
_y
2 1

6

lr cos y
c

� �2

þ
1

2
ðr sin yÞ2 þ

1

2

r3

c
cos y sin2 y

" #
, ðB:3Þ

T3 ¼
1

2
m3 _x

2
3 ¼ m3

_y
2 1

2
ðr sin yÞ2 þ

r3 sin2 y cos y
c

þ
1

2

r4 sin2 y cos2 y
c2

� �
, (B.4)

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 y

p
.
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The gravitational potential energy V2 of the connected rod is rewritten as

V2 ¼ m2gy2cg ¼
1

2
m2gr sin y. (B.5)

The Lagrange function L is obtained as follows:

L � T � V

¼
1

4
m1r

2 _y
2
þm2

_y
2 1

6

ðlrÞ2 cos2 y
c2

þ
1

2
ðr sin yÞ2 þ

1

2

r3 sin2 y cos y
c

� �

þ mB
_y
2 1

2
ðr sin yÞ2 þ

r3 sin2 y cos y
c

þ
1

2

r4 sin2 y cos2 y
c2

� �
�

1

2
m2gr sin y. ðB:6Þ

The virtual works dW A of Eq. (A.10) are rewritten as

dW A ¼ tdyþ ðFE þ FBÞdx ¼ t� ðFB þ FEÞ 1þ
1

c
r cos y

� �
r sin y

� �
dy. (B.7)

Substituting Eqs. (B.6) and (B.7) into the Euler–Lagrange Eq. (B.1), we have

ð2m3 þm2Þ þ
m3

c
r cos y

h i r3

c
cos y sin2 y

� �
þ ðm2 þm3Þr

2 sin2 y

(

þ
1

3
m2

l

c

� �2

ðr cos yÞ2 þ
1

2
m1r

2 þ Jm

)
€yþ m2r

2 sin y cos y 1�
l2

3c2
þ

r

c
cos y

��

þ
ðlrÞ2

3c4
cos2 yþ

r3

2c3
cos y sin2 y

�
�m2

r3

2c
sin3 yþm3r

2 sin y cos y 1�
r2

c2
sin2 y

�

þ
r2

c2
cos2 yþ

2r

c
cos yþ

r4 cos2 y sin2 y
c4

þ
r3

c3
sin2 y cos y

�
�m3

r3

c
sin3 y

�
_y
2

þ Bm
_yþ

1

2
m2gr cos y ¼ Ktiq � ðFB þ FEÞr sin y 1þ

r

c
cos y

� �
, ðB:8Þ

which is the same as Eq. (35), and has only one independent variable y.
Appendix C. The RLS standard form of a slider-crank mechanism

Eq. (49) for a slider-crank mechanism with damping can be expressed in the LS standard form
as follows:

y ¼ ½x1 x2 x3 x4�

m1

m2

m3

Cd

2
6664

3
7775, (C.1)
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where

y ¼ Ktiq � ðFB þ FEÞr sin y 1þ
r cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � r2 sin2 y
p

 !
� Bm

_y� Jm
€y, (C.2)

x1 ¼
1

2
r2 €y, (C.3)

x2 ¼
1

2
gr cos yþ _y

2
r2 cos y sin yþ €yr2 sin2 yþ

_y
2
l2r4 cos3 y sin y

3ðl2 � r2 sin2 yÞ

þ
_y
2
r5 cos2 y sin3 y

2ðl2 � r2 sin2 yÞ3=2
þ

€yl2r2 cos2 y

3ðl2 � r2 sin2 yÞ
�
_y
2
l2r2 cos y sin y

3ðl2 � r2 sin2 yÞ

þ
_y
2
r3 cos2 y sin yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � r2 sin2 yÞ

q þ
€yr3 cos y sin2 yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � r2 sin2 yÞ

q �
_y
2
r3 sin3 y

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � r2 sin2 yÞ

q , ðC:4Þ

x3 ¼
_y
2
r2 cos y sin yþ €yr2 sin2 yþ

_y
2
r6 cos3 y sin3 y

ðl2 � r2 sin2 yÞ2

þ
_y
2
r5 cos2 y sin3 y

ðl2 � r2 sin2 yÞ3=2
þ
_y
2
r4 cos3 y sin y

l2 � r2 sin2 y
þ
€yr4 cos2 y sin2 y

l2 � r2 sin2 y

�
_y
2
r4 cos y sin3 y

l2 � r2 sin2 y
þ

2_y
2
r3 cos2 y sin yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � r2 sin2 yÞ

q þ
2€yr3 cos y sin2 yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � r2 sin2 yÞ

q

�
_y
2
r3 sin3 yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 � r2 sin2 yÞ
q , ðC:5Þ

x4 ¼
_y. (C.6)
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